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EUVL challenges 
• Source Power  

• Resist 

• Optics 

• Illumination 

• Reticle Defectivity & inspection/ repair 

• Shadowing 

• Flare  
– Scales with λ , EUVL needs ~14x lower roughness lens than ArF 

• Aberrations  
– EUVL aberrations levels need to be controlled to λ/20 or better, while ArF 

needs λ/100 

– Additional concerns, which are manageable in ArF, but maybe a concern in 

EUVL include: thermal drift, monitoring, tool matching, & lens degradation  

– Measurement & monitoring will likely be more critical than other lithography 

generations 

– Image based aberration metrology has a window of opportunity with EUVL 
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Benefits of estimating lens aberrations from 

lithographic images 

• Has been used previously in DUV applications 

• Uses well characterized photoresist process 

• Targets are readily available on current IC reticles 

• Ability to monitor aberration levels during system use 

• Can be easily accomplished with a small amount of 

metrology and exposure time 

• Not a replacement for onboard metrology, but a 

complementary method 
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Wavefront aberration 
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EUVL System under study 

• ADT 

– Partial coherence 0.5, 0.25 NA, 4X, full field 

• MET 

– Programmable illumination, 0.3 NA, 5X, 1x3mm 

field 

• NXE3300 

– Variable partial coherence, 0.32 NA, 4X, full field 

• Other EUVL systems 
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Aberration test target selection 
ADT, 0.25 NA, σ=0.5 

• Criteria 
– Easily available on current EUVL reticles 

– Diffraction orders interact with aberration of 

interest in the pupil plane 

– High resist CD change for a given aberration level 

– Partial coherence of 0.5 causes higher order 

aberrations to be averaged with lower order 

aberrations in all targets 
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Aberration retrieval method 

• Aberration retrieval using target images collected 

through focus and/or exposure dose in a partially 

coherent optical system 

• Inverse imaging problem (numerical solution) 

– Use simulation/modeling for forward calculations 

to predict image shape in the image plane 

– Solve for match between reconstructed and 

measured image shape using numerical 

methods while varying Zernike coefficients 

– Iterative search algorithm to find aberration 

signature consistent with images through-

focus/dose 
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Extraction Flow 
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Aberration Measurement 
First test case 

• ASML AD1 (CNSE) λ=13.5nm, NA=0.25, σ=0.5 

• Exposure and SEM data collected over the period of a month 

• Film stack: Bare Si + ODL102 100 nm + SIARC SHB A940 35 

nm +75 nm SEVR139 on four wafers 

• Structures (repeated three times per field) 

– Astigmatism x (z5): P88 1:1 lines (reticle 1) 

– Astigmatism y (z6): P90 (45 degree) 1:1 lines (reticle 2) 

– Coma x (z7): P70 5-bar 1:1 (reticle 1) 

– Coma y (z8): rotated P70 5-bar 1:1 (reticle 1) 

– Spherical (z9): P75 – P400 35nm CD trench (reticle 1) 

– Trefoil x (z10):  30nm T-brick wall bright field (reticle 1) 

– Trefoil y (z11): not available  
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Measured H-V CD Through 

Focus 
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through focus can be correlated to the amount of x astigmatism in the 

system.   
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P88 1:1 Horizontal and Vertical 

 
Dose: 21 mJ/cm2 

Focus start: -0.18um 

Focus step: 0.01um 
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P90 1:1 45 degree lines 

• Dose: 21.5 mJ/cm2 

• Focus start: -0.21um 

• Focus step: 0.02um 
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Coma X & Y 

• Left and right (top and bottom) CDs of a 5 
bar structure were measured 

 

P70 1:1 5 Bar H (coma y) P70 1:1 5 Bar V (coma x) 
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Dose Start: 22 mJ/cm2 

Dose Step: 1 mJ.cm2 

Focus start: -0.05um 
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Measured 5 Bar Data 
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The difference in CD of the left and right lines of the 5 bar structure 

matches well with the model, the CD is dependent on dose matching 

between the model and scanner.  

*The extraction only uses the CD difference between left and right bars.  

This makes the metric somewhat CD independent.  
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Best focus through pitch 
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T – Bar Structure 

• 30nm T-Bar 

– Dose: 22mJ 

– Focus: -0.05um 

– Production 
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Extraction Flow 
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Stage 2 Details 
Extraction and user interface 
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Stage 2 Details 
Output 

• Eight iterations took ~4 hours on 8 cores  

• Zernike coefficients were extracted 
– Astigmatism X  (-0.028 waves) 

– Astigmatism Y  (0.014 waves) 

– Coma X (0.085 waves) 

– Coma Y (-0.044 waves) 

– Spherical (-0.006 waves) 

– Trefoil X (-0.185 waves) 

• No Results for Trefoil Y 
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• ASML AD1 (CNSE) λ=13.5nm, NA=0.25, σ=0.5 

• Exposure and SEM data collected over the period of a few days 

• Film stack: Bare Si + ODL102 100 nm + SIARC SHB A940 35 

nm +75 nm SEVR139 on three wafers 

• Structures (repeated three times per field) 

– Astigmatism x (z5): P80 1:1 lines (reticle 3)  

– Astigmatism y (z6): P80 (45 degree)1:1 lines (reticle 3) 

– Coma x (z7): P70 5-bar 1:1 (reticle 3) 

– Coma y (z8): rotated P70 5-bar 1:1 (reticle 3) 

– Spherical (z9): P64 – P192 32nm CD line (reticle 3) 

– Trefoil x (z10):  30nm T-brick wall bright field (reticle 3) 

– Trefoil y (z11): rotated 30nm T-brick wall bright field (reticle 3) 
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Aberration Measurement 
Second test case 
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Stage 2 Details 
Extraction and user interface 
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Stage 2 Details 
Output 

• Eight iterations took ~4 hours on 8 cores  

• Zernike coefficients were extracted 
– Astigmatism X  (0.041 waves) 

– Astigmatism X  (0.038 waves) 

– Coma X (0.050 waves) 

– Coma Y (-0.025 waves) 

– Spherical (0.044 waves) 

– Trefoil X (-0.209 waves)  

– Trefoil Y (-0.013 waves) 
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Comparing the two experiments 

• Test target differences 

– Reticles 

– Target location on 

Reticle 

– Mask stack 

– Targets 
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Summary 

• A method was developed to measure and extract 

aberration levels using image based testing 

– Uses standard mask targets and few wafers 

– Iterative inverse wavefront solution in a multivariable 

environment 

– Interactive user interface 

• Current efforts include more repeatability and 

predictability studies 

• Targets that include phase structure (PSM) can 

add additional sensitivity and higher-order terms- 

experiments underway 
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